ChipDocs - Datasheet Source for Semiconductor and Electronic Circuit Components
More than
12 598 244 
queries processed
Partname:CY7C1217H-100AXC
Description: 1-Mbit (32K x 36) Flow-Through Sync SRAM
Manufacturer:Cypress Semiconductor
Datasheet:PDF (386K).
Click here to download *)

The CY7C1217H is a 32K x 36 synchronous cache RAM designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining Chip Enable (CE1), depth-expansion Chip Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write Enables (BW[A:D], and BWE), and Global Write (GW). Asynchronous inputs include the Output Enable (OE) and the ZZ pin. The CY7C1217H allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst accesses can be initiated with the Processor Address Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address advancement is controlled by the Address Advancement (ADV) input. Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV).

Click here to download CY7C1217H-100AXC Datasheet
Click here to download CY7C1217H-100AXC Datasheet
*)
*)Datasheets downloading from ChipDocs is only for our members (paid service). REGISTER NOW for your membership.
Free Electronics Engineering Subscription
Win Win Circuit - PCB,PCBA,Touch Screen,LED Lighting
Win Win Circuit LTD. PCB, PCBA, LCD Module
www.wwteq.com
COPYRIGHT 1997-2024 ChipDocs  ALL RIGHT RESERVED